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A Characterization Based on the Absolute Difference

of Two I.I.D. Random Variables

by

Prem S. Puri* and Herman Rubin**

Purdue University, Lafayette

1. INTRODUCTION. Let X and X be two independent and identically distributed
___ _ 1 2

(i.i.d.) random variables whose common distribution is same as that of a non-

negative random variable X. The problem considered here is to characterize all

possible distributions of X which satisfy the following property H:

(1) H: The distributions of IX1-X21 and X are identical.

For instance, it is easy to verify that the discrete distribution with

P(X = 0) = P(X = a) = for some positive constant a, and the exponential distri-

bution with probability density function (p.d.f.) f where f(x) = 9 exp (-9x),

for x> 0, and f(x) = 0 elsewhere, with 8 > 0, both satisfy the property H. The

reader may find a different characterization based on IXl-X2t in Puri [2]. Let

F denote the distribution function (D.F.) of X. It can be eabily shown that if

X satisfies H, the distribution of X can either be only discrete or absolutely

continuous or singular and no mixture is possible. Thus one needs to consider

these three possibilities separately. For the case when X is discrete let A
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denote the set of possible discrete nonnegative values that X takes. More speci-

fically, let

P(X y), yEA; with 7p =1.
py yEA Y

It is clear that if there exists a y > 0 with p y > 0, then in particular A con-

tains zero with P0 > 0. Furthermore, from the property H, the following rela-

tions follow easily. 2J
(2) Po Px

x>O

(3) py = 2 E pxpx+y; y > 0.
x>0

Similar relations are satisfied by the p.d.f. f if X satisfying H is absolutely

contin- ous.

In section 2, we show that under H, X has a moment generating function

(m.g.f.) and hence all its moments are finite. Also in theorem 1, we consider the

case where X is bounded. Section 3 deals with the discrete case, and theorem 2

characterizes lattice distributions satisfying H. In section 4, we conEider the

absolutely continuous case. Here we study a more i-ieral question; namely if

X and X2 are two nonnegative independent but not necessarily identically dis-

tributed random variables (r.v.) and moreover if the distributions of X and

IX1 -X2 1 are identical, then given the distribution of X2 , what can be said

about the distribution of X ? The paper ends with a discussion in section 5,

where we have few words to say about the singular case.

2. PRELIMINARY RESULTS. In the following lemma it is shown that for an X satis-

fying H, its m.gf. and hence all its moments exist.

Lemma I. The m.g.f. of a nonnegative r.v. X satisfying H exists.
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Proof. If X satisfying Hi i5s degenerate, itL Ls nlear that P(X0-) =1, and the

lemma holds tri.vially. Let X be nondegenerate. Then there is a niumber u > 0

such that P(X < u) > -1. Using this and the property H, it follows that for every

v > 0.

(4) P(X > v) =P(1X 1 -X2 1 > v) >j 2 P(X > u+v) P(X <u)

so that

P(X > u-iv) < P(X > v) /2 P(X < u),

for all v > 0. A repeated appiication of this leads to

P(X > nu) i2(< -u)]; for n =1,2'.

From this one can easily show the existence of an re > 0 such that 'E(exp ( X))

exists for all 1r :S Y.

The following theorem provides the answer to our problem when X is bounded.

Theorem 1. Let X be nonnegative and nondegenerate. Then the following three

statement. are equivalent.

Wi X is bounded and satisfies H.

(ii) A' satisfies H and P(X=o) =-2k

(iii) P(X0O) =P(X=a) =-,for some a > 0.

Pryof. Clearly (iii) -(i) and (ii). All we need to prove is that (i) -(iii)

and (ii) =*(iii). Let (i) hold. Since X is bounded and nondegenerate, there

exist a least upper bound B > 0, such that P(X > B) =0 and for every 0 < c < B,

P(X > B-0)> 0. On the other hand since X satisfies H, we have for every such c

(5) 0 < P(X > B-c) =P(JX -X ' > B-Fs) < 2 P(X < c) P(X > B-@),
1l2

which implies that for every 0 < < B, P(X < E:) > \and in particular letting

c ten"' to -zero we have P(X=OC) > .This implics that X must be a discrete random
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variable (r.v). Using the notation introduced in section 1 for such a case, we

have

I < go p P < i. This yields

p((l-p() P ' 
2 <(max px)Q>PX) =(max px) (I _p0

x>\

so that p. < max px. Hence we have
x>O

< P0 max Px <S < '

x>O

so that p0 
= max px = I which implies that P(X=O) = P(X=B) = . This proves

x>O

that (i) = (iii) with B = a. Now let (ii) hold. Since pO = ' X must be a dLs-

crete r.v if it has to satisfy H. For this we have already seen that P0 (l-P 0 )
~, 2

= p 2. This means thet we have
X>O

2 1 =
= and : Px -

x>O X>0

But this holds if and only if px = for some x = a > 0, so that (iii) holds.

Q.E.D.

Before closing this section we wish to remark that for the nondegenerate

discrete case, for X satisfying H we must have 0 < pO < 1. That P0 > 0 follows

from (2) and the fact that Px 1. That p0 < follows from the fact that
x>O

for every y > 0 with py > 0, p > 2 popy under H.

3. DISCRETE CASE. We now consider the case where X is discrete and satisfies

the following additional condition C.

(6) C: Th. e exists an interval (61,6.] with 0 < 61 < 6, <

such t.hat P(W, < X < ) 0.
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Using the notation of section 2, we first prove three lemmas needed to prove

the main result of Theorem 2.

Lema 2. Let X be discrete, nondegenerate and satisfy H and the condition C.

Then

(i) T = inf fx: x > 0, Px > 0) > 0 and pT > 0, and

(ii) the set of possible values of X is given by ki; k = 0,1,2,...

Proof. (i) Since X is nondegenerate, it is clear that the set [x: x > O, px > 01

is nonemty. Again if P0 = 3, (i) and (ii) are satisfiA in vie,- of Theorem 1,

so that let 0 < p < ' By Theorem 1, this means that X is not bounded. Let S

be the set of possible values of X. In view of the property H, it is easy to

show that S forms a positive linear space in integers. By this we mean that if

x c S, i = 1,2,... , then JE n. xJ c S for all integer values (positive or

negative) of n. 's. Now for an unbounded set with this property, it is not diffi-1

cult to show that either this set is dense everywhere over [0,-) or is a lattioe.

On the other hand in view of condition C, it cannot be dense everywhere. Hence

the lemma follows. t. ".D.

In view of lemm.a 2, let p denote the probability p(X=kT), for k 0,1,2,...

so that pk 1. The analogues of (2) and (3) are given 'y

k--O

(9) !

i--o ! i-

i=

We shall new rontrwict tc the case with C < p < n. Thus the set of pcssible

values of X, in view cf Thecre 1 , m ust b,, infinitely denumerable. Furthermore.

from (12) if the ftilcwng lciut z 0 that .er _CerA.ticn C, p > C, for
k. w h udre~te k > C ':
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Le=m 3. Let H and C hold and also let 0 < p0 <1 Then fork 1,2,.

k 1-2 pO

and
2 1 -2p,)(12) > i 0(l2p)

Pk~+ - 2 2 Pk

Pk r (1_2po)2 + 4 pl2 "1

Proof. (11) follows easily from (10) by noticing that for k > 1,

Pk(l-2po) 2pl1k+ 1 P 2 p i hk

i=2

and that the right sice oi (13) is nonnegative. To prove (12), we first notice

from (10) that for k > 1,

()Pk+l 2 P

i -.0 ~i O

or equivalently
CD

i l

Then using (ii) for eac-h pion tht right side of (15) we have

k+l -- p Pil Pi*k+ - (2 )" ." . i Pi+k

I ( -P -"r Pk+
k 0 k

He{re at tht: en, of \:6) ze', Fi (s) nally 2) follows imrmediate-

yrc (li) after a iit/1, spifiati , .
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For each sequence [pk] satisfying H (or equivalently (9) and (10)) and

wit- 0 < pO < 1, define

~=sup (b: b > 0 satisfying pk > b Pk for all k > 1]

and

y = sup (c: 0 < c < 1, satisfying Pk+l - e pk for all k > 1),

so :hat

(17) Pk - I Pk+l ; k = 1,2,...

and

(18) Pk*]. Y- Pk ; k= ,,. .

From lerma 3 it follows that for every sequence [pkl satisfying H and with

0 < PO < ' there always existz positive 3 and y. Also by definition of .1, it

is clear that for every such sequence 0 < I < p1 /p2 . Here P2 > 0; in fact because

of (12) plg > 0 for all k > 1. Also y has to be strictly between 0 and 1. That

it cannot be equal to one follows from (18) and the fact that pi converges.

i=O

The following lema is the essential lead to the main theorem of this section.

4. For every sequence pk I with 0 < p < I and satisfying H, I y = 1.

Proof. From (17) and (18) it is clear that 3 y < 1. It is sufficient then to

prove that . y 1 1. From (14:) we have for k > 2,

W

(19) Pk (l-2pO) = 2 P Pi Pi+k

Using (18) on the right side of (19) for each pi we have

2(20) Pk(I'2Po 0-- P i +IPi+k 2 7 Pi Pi+k-I

i=l i=2

1 r- 1 - 2pop 1 1 - 2 ;P1 P
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whic]7 after simplification, yields for k - 2,3,...

r + p
Pk-i LY + 1-2p 0 

3 k

or equivalently for k = 1,2,....

2p 
1

(21) P> 2p
k E-Y+ l- 2 pC k+

Comparing (17) and (21) and keeping the definition of 3 in mind, we have

2p
(22) (3 - y) >_ -2p0

Again, using (17) on the right side of (1q), we have for k > 2,

(23) Pk(1-2P0) >2 j Pi+2 Pi+k = (2 p P

i-l i=2

i [Pk-l - 2 POPk-I PlPk]

On simplification, (23) yields for k > 2,

- (1-2p 0 )
pk > T-i-2po + 2p 1) Pk-i

or equivalently for k > 1,

13 (!.-2p0 )
(24) Pk~ -3-2

(kl - (l-2p0 + 2p1 9) Pk

Finally comparing (18) and (24) and using the definition of y, we obtain

9(1-2p o )

Y 2_ 1l-2 p G+ 2p )

or after simplification

2p

Now it easily follows from (22) and (25) that 3 y > 1. Q.E.D.
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We are now in a position to state and prove the main theorem of this section.

Theorem 2. Let X, and X Le two independent copies of a nornegative discrete
____ 2

random variable X satisfying condition C. Then X and the absolute difference

I 1-X2 Ihave the same distribution if and only if the distribution of X is given

for some positive constant -, b iy-

(26) rp-1-( = o) = p0

Pr(x kT) =2p0(1-p0 ) (1-2po ); k = 1,2,...

where either p0 = 1 or 0 < P0 < 1 .

Proof. The case with pO, = 1 is that of a dege-nerate r.v. X. Also we have

argued before that for a nondegenerate X, we must have 0 < pO < " The case with

p0 o is covered in theorem 1. Let us assume then that C < pO < 4-. From lerna

4 and equationz (17) and (18) it fcllcws that

(27) Pk+l Pk ; k 1,2,...

or equivalently

(28) pk Y k-i , k 1,2,...

Now it is easy to show using (9) and the fact that pi 1 , that y = (l-2po)

i=O

and p, = 2po(l-p0)" Q.E.D.

4. ABSOLUTELY CONTINUOUS CASE. Let f(x) denote the p.d.f of the nonnegative

r.v. X with the property H, The property H is then equivalent to f(x) satisfying

the relat ons

(29) ] f(x)dx 1 ; f(t) 2 f(x+t) f(x)dx ; for all t > 0.
00

p
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Furthermore in view of theorem 1, X is unbounded. The following lemma give3

certain properties of an f satisfying (29), which we shall need later.

Lemma 5. Let the p.d.f f(x) of a nonnegative r.v X satisfy (29). Then it also

satisfies the following,:

(i) f(x) is lower s~micontinuous for all x > 0.

(ii) f(x) > 0, for all x > 0.

Proof. (i) From (29) for t = 0, we have

(30) f(o) =-2 f2(xjdx ; '(x)dx 1
0 0

so that we must have f(O) > 0. On the other hand sinct

(z f(y+z) f(y)dy ; - z < K
0

is the p.d.f of X .-X2, or equivalently the p.d.f. of the convolution of X and

-X2, *(z) is lower semicontinuous for all -- < z < -3. By virtue of (29) there-

fore, f(t) is lower semicontinuous for all t > 0.

(ii) Assume that there exists an interval (a,b) with o < a < b, such that

f(x) = 0 for all x e (a,b). Since f(O) > 0 and f(x) is lower semicontinuous at

zero, there is an c > 0, with a < b - e/2, such that f(x) > 0, for all x E [O,C].

Using this and (29), it is now easy to show that f(z) = 0, for all a < z < b +

C12, a.e.p. By an induction argument we then have f(z) = 0 for all a < z < b +

n e/2, a.e.p, for n = 1,2,.... Letting n- , we have f(z) = 0 for all a < z <

, a.e. t. But this implies that X is bounded, which is a contradiction. Thus

there exists no interval 1c[O,,) with p(I) > 0 such that f(x) = 0 for all x c I.

This implies that f(xj > 0 for all. x > 0, a.e.p. Now let f(xO ) z 0 for some

x0 > 0. Then

p
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Ca f xx) fx)cx b 'a f(x+x 0 )f(x)dx = o, for 0 < a < b <
0 a

f(x+xO ) = 0, for all a < x < b with f(x) > 0, a.e.p.

But p Lx: a < x < b, f(x) > 0] = b-a, which also yields p rx+x0 : a < x < b,

f(x) > 0] = b-a > 0. This contradicts the fact that f(x) > 0, for all x > 0

a.e.L. Thus f(x) > 0, for all x > 0. Q.E.D.

We shall now consider a more general problem. Let X and Y be two nonnega-

tive independently but not necessarily identically distributed random variables.

Let F and G denote the D.F's of X and Y respectively. Given F and that the

distributions of Y and jY-X are identical, what can 7e say about the distribu-

tion of Y, i.e. about G? The reader may find in Feller El] a treatment of this

problem considered for a somewhat restricted case. That the distributions of Y

and IY-XI are identical is equivalent to the relation

(31) G(t) = j G(x+t) dF(x) + f F(y+t) dG(y) ; for all t > 0

0 0

The following theorem provides an answer to the question raised above.

Theorem 3. Let X and Y be two nonnegative independent random variables with F

and G as their respective DF.'s. Let E X < - and F have an absolutely continu-

ous Part. Then G satisfies (31) if and only if G is :solutely continuous with

p.d.f. g where

(32) g(y) = [l-F(y)] / EX ; for all y > 0.

Proof. It is easy to verify that g(y) of (32) does satisfy (31). All we need

to show is that this is the unique g that satisfies (31). To this end, consider

a sequence of i.i.d. random variables X1, X2, X3 ,..., with their common distri-

buation same as that of X. Define another sequence of random variables Zk recur-

sively by



12

(33) zI = x, zn+ 1 = Iz -X+l

Then clearly [Zn} is a Markov chain (M.C) with state space ro,-) and the tran-

sition D.F. H, given by

(34) dH(xly) = dF(x-y) + dF(x+y)

so that if Gn is the D.F. of Zn, it is easily observed that GI  F and for

n = 2,3,...,

(35) Gn(y) = G 1 (x+y) dF(x) + F(x+y) dGn_l(x)

0 0

Letting n - c, we observe that any solution G of (31) is a stationary distribu-

tion of the M.C. (Znj. We have already observed that g(y) given by (32) is such

as stationary distribution. That this is the unique stationary distribution and

hence the unique solution of (31) follows from the fact that the above M.C. de-

fined on [O,) is indecomposable, which is a simple consequence of the fact that

F has an absolutely continuous part. Q.E.D.

In answer to our original question, we now have the following theorem.

Theorem 4. Let X and X2 be two independent copies of a nonnegative r.v. X

with p.d.f. f(x). Then X and iX,-X2 l have the same distribution, if and only if

for some 0 > 0,

e , for x > 0

(36) f(x) =

0 elsewhere

Proof. Clearly if f(x) satisfies (36), the distributions of X and IX -x2! are

identical. Assuming now that the distributions of X and x l-X 2 1 are the same,

it is easily seen that f(x) satisfies the conditions of theorem 3, in view of

lemmas 1 and 5. On the other hand comparing (29) and (31), we have under H,

g(y) = f(y), so that replacing g(y) with f(y) in (32), and solving the resulting

equation for f(y) = F'(y) we obtain (36) with 0 = EX. Q.Z.D.
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5. A FV' CONCLUDING REMARKS. The lines of proof adopted for theorem 3 and hence

of theorem 4, in principle should also work for the discrete case of section 3.

Let X and Y be two appropriate nonnegative discrete r.v, both independently but

not necessarily identically distributed with fpx I and [p y as the set of their

probabilities (as defined in section 1). Given that the distributions of Y and

IY-XI are identical, the analogue of equation (29) is given by

=

X>O

(37)
qy = 1 pxqx+y qx Px+y ; for y> 0.

x>G x>O

However, here essentially it is a matter of first guessing a general solution of

(37) for qy's satisfying S qy = 1, in terms of Px's, an analogue of (32). After
y>o

this, replacing qy's with Px's in this ,olution, py 's can be explicitly obtained

to yield the answer to our original problem.

Concerning the singular case of an X with property H, at present we can only

say in view of theorem 1, that X has Lo be unbounded. On the other hand let us

consider again the approach adopted in section 4. Let F(x) and G(y) respectively

be the continuous distribution functions of two nonnegative independent random

variables X and Y. This will cover both absolutely continuous and singular cases

of our problem. Introduce a M.C similar tc the one of section 4, defined on

[O,-), but with the assumption that X h- 0hi continuous D.F. F(x), so that (31)

and (35) are still satisfied. Any solution of (31) is a stationary D.F. G of our

M.C. (Zn . On the other hand, if EX< -, it is easily verifiable that

(38) dG(y)/dy = [I-F (x)] / EX ; , > 0

is a solution of (31) and hence a stationary D.F. of' M.C. [Ln3. The onl, problemnn rbe
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here is to show that (38) is the unique solution of (31). For this we need to

show that the M.C. (znI is indecomposable. Once this is established, (38) is

the unique solution of (31). The solution to our problem is then obtained by

replacing G with F in (38) and solving this for F. This turns out to be the same

as (36). Thus, subject to the uniqueness of the solution of (31), t'e solution

to our original problem would be (36) even when D.F. of X is given to be only

continuous. This would mean that there is no singular distribution with the

property H. Our conjecture is that this is in reality the case.

Finally, in section 3 for the discrete case the result of theorem 2 was

proved subject to the condition C. Our conjecture is that this result holds even

without this extra condition.
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